
Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
08 JAN 2015

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Parallel Software Model Checking

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Chaki /Sagar

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

3

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

LENS-funded Projects

void main() {

 int x = 0;

 while(x < 10) x++;

 assert (x == 10); }

𝑐1: 𝑥 = 0 ⇒ 𝑃 𝑥

𝑐2: 𝑃 𝑥 ∧ 𝑥 < 10 ∧ 𝑥′ = 𝑥 + 1 ⇒ 𝑃 𝑥′

𝑐3: 𝑃 𝑥 ∧ 𝑥 ≥ 10 ∧ 𝑥 ≠ 10 ⇒ 𝐸𝑟𝑟𝑜𝑟

𝑄:𝐸𝑟𝑟𝑜𝑟

Parallel Software Model Checking

Team Members

Sagar Chaki, Arie Gurfinkel, Derrick Karimi

Project Description (Technical Content)

As the DoD continues to become software reliant, rigorous techniques to assure the correct behavior of

programs are in great demand. Software model checking (SMC) is a promising candidate, but its scalability

remains unsatisfactory. Recent years have seen the emergence of HPC technologies, e.g., multi-core processors

and clusters. Yet, few software model checkers are designed to use this cheap and abundant computing power.

A key reason is that model checking is at its core a graph search – where the graph is the state-space of the

model – which is difficult to parallelize effectively (i.e., obtain reasonable speedups). The main challenge is to

partition the search among the CPUs in a way that limits duplicated effort and communication bottlenecks. A

promising approach is to start with a verification algorithm that maintains a “worklist” and to distribute

elements of the worklist to different CPUs in a “balanced” manner. New elements are added to the worklist as

a result of processing an existing element. For example, this strategy has been used successfully to parallelize

the breadth-first-search in the SPIN model

checker. This project will explore this strategy to

parallelize the generalized PDR algorithm for

software model checking. It belongs to TF1 due

to its focus on formal verification.

Generalized PDR. Generalized Property Driven

Rechability (GPDR)
i
 is an algorithm for solving

HORN-SMT reachability (HSR) problems. A HSR problem

consists of a set of HORN-SMT clauses 𝑪 and a reachability

query 𝑸. A HORN-SMT clause is a logical implication whose antecedent (a.k.a. body) is a conjunction of

terms (some of which are predicates) and whose consequent (a.k.a. head) is a single predicate. The query 𝑸 is

also a single predicate. The solution to the HSR problem is “UNSAT” if there is an interpretation to all the

predicates under which: (i) each HORN-SMT clause in 𝑪 is valid; and (ii) 𝑸 evaluates to false.

We target HSR because a number of software verification projects – that target sequential C code, periodic

real-time software, Simulink and Lustre programs etc. – work by reducing their problems to HSR. For

example, Figure 1 shows a program 𝑷𝒓𝒐𝒈 on the left and the HSR problem whose solution is “UNSAT” iff

𝑷𝒓𝒐𝒈 is safe (i.e., does not violate the assertion, which is the case) on the right. Note that there are three

clauses -- 𝒄𝟏, 𝒄𝟐, 𝒄𝟑 – and the predicate 𝑷 𝒙 represents the loop invariant. Thus, an effective parallel solution

to HSR will be of immediate benefit to these projects. It will also establish the SEI as an important player in

the budding HSR solving community.

Task 1. Develop parallel GPDR algorithm. GPDR is naturally worklist based. Each element of the worklist

is a triple 𝑃, 𝜎, 𝑛 where 𝑃 is a predicate, 𝜎 is a context (consisting of logical formulas representing known

facts or lemmas) and 𝑛 is a search depth. Informally, the item represents a question of the form “is the

satisfiability of 𝑃 derivable in 𝑛 steps under the assumption 𝜎”? Processing 𝑃, 𝜎, 𝑛 involves the following

steps for each clause 𝑐 whose head is 𝑃: (Step1) solve an SMT query 𝑞 constructed from the body of 𝑐 and 𝜎;

Figure 1.(Left) a program P; (Right) HSR problem.

(Step2) if 𝑞 is UNSAT, update 𝜎, and return result UNSAT; (Step3) if 𝑞 is SAT generate new worklist sub-

items 𝑃𝑖, 𝜎, 𝑛 − 1 for each predicate 𝑃𝑖 appearing in the body of 𝑐. If the result of processing each of these

sub-items is SAT, return result SAT. If the result of at least one sub-item is UNSAT, either generate new sub-

items or return UNSAT if no further sub-items can be generated. We will develop parallel GPDR in 3 stages:

1. Stage 1. Managing dependencies between items in a provably correct way. As seen above, the result for an

item depends on those of sub-items. The dependency forms a directed acyclic graph (DAG) since one item

can be a sub-item of two other items. Version 1 of parallel GPDR (PGPDR) will overlay this dependency

management on top of distributing the items to CPUs. We will prove correctness of our algorithm.

2. Stage 2. Terminating “junk” queries. Consider the sub-items { 𝑃𝑖 , 𝜎, 𝑛 − 1 } generated in Step3 above. As

mentioned above, if the result of even one of these sub-items is UNSAT, then the results of the other sub-

items become irrelevant. PGPDR version 2 will detect and terminate such obsolete queries. Since item

dependencies form DAGs, this will require reference counting to avoid premature “garbage collection”.

3. Stage 3. Minimizing results. In the final stage, we will develop algorithms to minimize the learned lemmas.

Since the logics we will operate over (linear real arithmetic, bit-vectors etc.) do not have canonical forms,

we expect that over time our lemmas will become syntactically redundant and also irrelevant.

Minimization will reduce this redundancy and eliminate useless lemmas periodically.

Task 2. Design scalable architecture for PGPDR. We will scale PGPDR from multicore CPUs to clusters.

Late binding and a layered architecture will allow variation in runtime framework and data storage. We will

develop a task control and message-passing API, and use them to build and deploy PGPDR. A data

abstraction layer will also be included. It will allow the choice of data store to evolve based on observed data

access requirements of the algorithm. We will target two deployment modes: single node and clustered. As the

implementation of the algorithm matures, our architecture will handle increasingly large problems. Initial

analysis looked at candidate openly available software components on which to build PGPDR in both

deployment modes.

1. Single Node. Initially, PGPDR will be deployed on a single multicore machine. The task control will be

implemented with a thread pool, messaging and caching. The item-dependency DAG will be stored using

a graph database.

2. Clustered. Subsequently, PGPDR will be deployed to a cluster. We believe that the algorithm’s layered

architecture will allow it to be easily ported to common cluster-scale runtime frameworks, which supports

the task and messaging architecture in our PGPDR design) and distributed databases.

Evaluation. We will evaluate the parallel GPDR by comparing it to sequential GPDR and measuring speedup

as a function of the number of cores.

Related Work. Both the LTSmin
ii
 and SPIN

iii
 projects have developed algorithms for multi-core LTL model

checking. These algorithms are explicit-state and target modeling languages such as PROMELA and DVE. In

contrast, our algorithm is symbolic and targets HORN-SMT reachability. Ditter et al.
iv
 have developed

GPGPU algorithms for explicit-state model checking. Our project will target multi-core CPUs and compute

clusters where the programming model is different (e.g., task-oriented and not restricted to SIMD).

Team. Sagar Chaki and Arie Gurfinkel are experts in software model checking and the GPDR algorithm.

Derrick Karimi is experienced in high-performance and distributed computing, and a lead developer of ETC
v
.

i
 Krystof Hoder, Nikolaj Bjørner: Generalized Property Directed Reachability. SAT 2012: 157-171

ii
 Alfons Laarman. Scalable Multi-Core Model Checking. 2014. PhD Thesis

iii
 Gerard J. Holzmann: Parallelizing the Spin Model Checker. SPIN 2012: 155-171

iv
 Alexander Ditter, Milan Ceska, Gerald Lüttgen: On Parallel Software Verification Using Boolean Equation

Systems. SPIN 2012: 80-97

v
 Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-

05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and

do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,

BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM

PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal

use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and

derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external and/or

commercial use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM-0002056

